亲爱的CFA学员:欢迎来到融跃教育CFA官网! 距离 2025/2/17 CFA一级考期还有 天!
全国热线:400-963-0708 网站地图
【CFA三级考试知识点】数据计算的错误与偏差? 发布时间:2020年09月21日

薛老师

5年从事CFA培训经验,善于学生沟通,能抓住每一个学生的特点来辅导。

  在CFA三级考试知识点中,有关资本市场预测过程还有一个问题,就是数据计算的错误与偏差,下面融跃小编就为大家讲讲这个知识点。

  我们将这一问题分为“错误”(error)和“偏差”(bias)两类。相较于“偏差”,“错误”被人们及时发现后,是可以避免的。

  誊写错误(transcription errors):这类错误经常发生在数据的收集、处理过程中。例如,在处理数据时,将数字“5.20”看错为“5.02”就属于这类错误,如果数据誊写错误总是偏向一个方向(涉嫌故意篡改数据),这就是非常严重的问题。

  存活偏差(survivorship bias):如果数据只是反映了一段时期内存活下来的个体情况,就发生了存活偏差。这类偏差在对冲基金的业绩统计中非常常见。市场上对冲基金的分化情况严重,存活下来的对冲基金通常都有着较高的收益,而那些被市场淘汰的对冲基金则是血本无归。只统计存活下来对冲基金的业绩,就会高估对冲基金投资品种的整体业绩表现。

  后果:存活偏差下统计所得的数据由于只考虑到了存活个体的情况,因此将高估投资品种未来收益率的表现,并且低估其风险,从而使得预测结果失真。

  数据平滑(appraisal[smoothed]data):数据平滑现象经常发生在那些流动性很差的市场上,被平滑的数据一般是该类市场上的成交价格。假设在当前房地产市场上,分析师获取了某套房产月初以及月末的成交价,那么他想要评估该房产位于月中的价值,就只能对相关数据做平滑处理。平滑后数据的波动性,往往小于市场上真实数据的波动性。

  后果:如果分析师使用了关于资产的平滑数据,那么他在计算该类资产与其他类资产相关性时,就会低估该相关性的真实数值。此外,数据平滑后计算所得的标准差也是被低估的。

  解决方法:分析师可以有意识地对数据的波动性进行放大,如此一来,数据的离散波动幅度也将随之增加,但是数据的均值并不会因此发生改变。

微信扫一扫

还没有找到合适的CFA课程?赶快联系学管老师,让老师马上联系您! 试听CFA培训课程 ,高通过省时省心!